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The dispersion and dissipation properties of the discontinuous Galerkin method
are investigated with a view to simulating wave propagation phenomena. These prop-
erties are analysed in the semi-discrete context of the one-dimensional scalar advec-
tion equation and the two-dimensional wave equation, discretized on triangular and
quadrilateral elements. They are verified by the results from full numerical solutions
of the simple scalar advection equation and the Euler equations.c© 1999 Academic Press
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1. INTRODUCTION

The discontinuous Galerkin method appears to have been first proposed by Reed and Hill
[28] for the solution of the linear neutron transport equation. Lesaint and Raviart [21] were
the first to put this method on a firm mathematical basis. Among the later rigorous analyses
of the method are those of Johnson and Pitk¨aranta [19], Richter [29], Peterson [27], and
Bey and Oden [4]. All these studies are confined to linear equations. The first analysis of
this method as applied to a non-linear scalar hyperbolic equation is due to Chavent and
Cockburn [7]. It was first-order accurate in time and second-order accurate in space. In
[9], Cockburn and Shu retained the finite element formulation of [7] but used a second-
order Runge–Kutta type discretization in time. Subsequently, they generalized it to a class
of discontinuous Galerkin methods of arbitrary order of formal accuracy and proved their
convergence and total-variation boundedness in the mean [10]. Then Cockburnet al. [11]
extended their analysis to a one-dimensional system of conservation laws, and Cockburn
et al. [12] further extended it to the multidimensional scalar case, and more recently
Cockburn and Shu treated the multidimesional systems case [13]. These schemes essentially
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employ a discontinuous element formulation and an explicit Runge–Kutta time
discretization and have proven to be inherently compact and robust; a quadrature free
formulation of these schemes is described by Atkins and Shu [2]. They apply it to the invis-
cid Burgers equation and to some one-dimensional and two-dimensional linear advection
problems, including the linearized Euler equations for acoustics. They show that this formu-
lation requires comparatively less storage and computational time than their conventional
counterpart. In [3] Bassi and Rebay extended the discontinuous Galerkin method to the com-
pressible Navier–Stokes equations. In their formulation, the solution and its gradient are
approximated in the same function space, thereby preserving compactness. They illustrate
the performance of the method for supersonic flow past an airfoil (at rather low Reynolds
number) using constant, linear, quadratic, and cubic elements. Cockburn and Shu [14] have
also extended their approach to deal with the time-dependent scalar advection–diffusion
equation by rewriting the equation as a degenerate first-order system and have suggested
how the approach could be applied to the Navier–Stokes equations. The amenability of the
method with discontinuous spatial elements for parallel computation has been established
by Biswaset al.[5]. Thus, while the inherent flexibility of such schemes to handle complex
geometry and their compactness are obvious, their robustness and ease in accommodating
boundary conditions and parallel implementation have been demonstrated by the above
studies.

It is well recognized that highly accurate methods are needed for long-time simulations
of wave propagation phenomena in acoustics and electromagnetics, which are essentially
non-dispersive and non-dissipative [16, 17]. Many current numerical schemes employed
to study such problems are of the finite difference type [20, 22, 31, 33]. Finite element
methods have also been advocated by numerous authors (see, for example, [6, 25, 26]). The
properties of such methods for the Helmholtz problem have been widely studied [1, 34,
36]. For hyperbolic problems, Shakib and Hughes [30] provide a Fourier analysis of the
space-time Galerkin/least-squares method. The analysis of the Taylor–Galerkin method in
one dimension has been proposed by Khelifa and Ouellet [18] and Chaffin and Baker [8].
In these methods, the space discretization is continuous so the inversion of a global mass
matrix is generaly required. The discontinuous Galerkin method provides an attractive
alternative. Lowrie [23] and Lowrieet al. [24] considered the space–time discontinuous
Galerkin which involves discontinuous elements in both time and space. In [23] a Fourier
analysis of the scheme was performed which shows a “superconvergence” property; i.e.,
the evolution error is O(h2k+1) if the order of the polynomial space used isk. Nevertheless
the method requires excessive resources to be useful for practical applications. In this
paper, we investigate the wave propagation properties of the semi-discrete form of the
discontinuous Galerkin method. We study the dissipation, dispersion, and anisotropy errors
introduced by the space discretization and examine these errors on Cartesian and triangular
grids.

We provide a brief description of the discontinuous Galerkin method in Section 2. An
analysis of wave propagation in one dimension and two dimensions is carried out in
Section 3. In the two-dimensional case, the study is based on a structured rectangular
and triangular grid. Section 4 contains several numerical examples for the one-dimensional
advection equation and the two-dimensional non-linear Euler equations, which validate
the analysis. Some numerical results from the simulation on an unstructured grid are also
presented. The last section discusses the conclusions.
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2. DISCONTINUOUS GALERKIN METHOD

Consider a conservation equation for a quantityu in a regionD

∂u
∂t
+∇ · F(u) = 0, (2.1)

whereF(u) is a flux vector. Let the domain be partitioned into non-overlapping sub-domains,
or elements,Di . The discontinuous Galerkin method is a finite element method in which
the approximation spaceVh may be discontinuous across element interfaces. In the semi-
discrete formulation,Vh contains only spatial functions

Vh = {v ∈ L1(D) : v |Di ∈ P(Di )},

whereP(Di ) is a polynomial space defined onDi . The degrees of freedom of the solution
are then obtained by solving a weak formulation of (2.1).

LetBi = {vi
l }l=0,...,N−1 be a local basis set such that

Span(Bi ) = P(Di ), Supp
(
vi

l (x)
) = Di , l = 0, . . . , N − 1.

Then the approximate solutionuh satisfies∫
Di

vi
l

(
∂uh

∂t
+∇ · F(uh)

)
dx = 0, l = 0, . . . , N − 1 (2.2)

in each elementDi . Using Green’s formula, Eq. (2.2) is recast as∫
Di

vi
l

∂uh

∂t
−∇vi

l · F(uh) dx+
∫
∂Di

vi
l F(uh) · n ds= 0, l = 0, . . . , N − 1, (2.3)

where∂Di is the boundary ofDi andn denotes the unit outward normal vector. Since the
data are discontinuous across the interface of contiguous domains, two values ofuh (ui

h

insideDi andu j
h outsideDi ) are available at the interface. A numerical fluxFnum is then

used to evaluate the interface flux in the last integral of Eq. (2.3)

F(uh) · n | ∂Di = Fnum
(
ui

h, u
j
h, n
)
.

The above formulation can be interpreted as a standard Galerkin method in each element
with a weak boundary condition. Johnson and Pitk¨aranta [19] have shown that the order of
accuracy of the method is at leastn+ 1/2 if polynomials of degree at mostn are used as
basis functions. However, Lesaint and Raviart [21] and Richter [29] proved that the order of
accuracy is(n+ 1) on a Cartesian grid and on a semi-uniform triangular grid, respectively.
For simplicity, we call the method to be(n+1)th order if the basis functions are polynomials
of degree at mostn.

3. WAVE PROPAGATION ANALYSIS

To study the wave propagation properties of the semi-discrete discontinuous Galerkin
method described above, we consider the conservation law (2.1) with the linear flux

F(u) = (A1u, . . . , Adu), u = (u1, . . . ,um), (3.1)
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whered is the number of space dimensions andAi=1,...,d are constantm×m real matrices
such that any real combination of theAi has real eigenvalues.

As the problem is linear, the standard numerical fluxes may be written as

Fnum(u1, u2, n) = Ã
+
α u1+ Ã

−
α u2 with Ã =

d∑
k=1

Aknk,

where

Ã
+
α =

Ã+ α|Ã|
2

; Ã
−
α =

Ã− α|Ã|
2

,

andα is a real positive number. The caseα = 0 corresponds to a centered flux andα = 1
corresponds to the Roe flux (which, since the problem is linear, is the same as the Godunov
flux [15] or the Steger–Warming flux [32]).

Assuming an unbounded domainD and writing the local approximate solutionuh in Di

as an expansion of the local basis setBi

uh|Di (x, t) =
N−1∑
l=0

Ci
l (t)v

i
l (x),

whereCi
l are the expansion coefficients or the degrees of freedom for the solution inDi ;

Eq. (2.3) then reads

N−1∑
l=0

{
∂Ci

l

∂t

∫
Di

vi
l v

i
l ′ dx−

d∑
k=1

AkCi
l

∫
Di

vi
l

∂vi
l ′

∂xk
dx+

∑
j∈Nb(Di )

Ã
+
α Ci

l

∫
Si j

vi
l v

i
l ′ ds

+Ã
−
α C j

l

∫
Si j

v
j
l v

i
l ′ ds

}
= 0, l ′ = 0, . . . , N − 1 (3.2)

with

Nb(Di ) = { j, j 6= i : Si j 6= ∅} and Si j = ∂Di ∩ ∂D j .

To compute the dispersion relation of the scheme, we seek a solution in the usual form

u(x, t) = û ei (k·x−ωt), (3.3)

which represents a sinusoidal wave train with a wave numberk and a frequencyω. First an
unbounded domain is generated by repeating a mesh pattern (Fig. 11). Then the expansion
coefficientsCi

l of the solution are calculated by projecting (3.3) onto the local basis of the
elements in the mesh as

Ci
l (t) = û

∫
Di
vi

l (ξ)e
(i kξ−ωt)dξ∫

Di

(
vi

l

)2
(ξ)dξ

, l = 0, . . . , N − 1.

Since the mesh is structured, for each element there exists a translation which maps a
reference element̂D onto the elementDi such that

X = X̂ + xi , xi ∈ Di , X ∈ Di , X̂ ∈ D̂.
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We then have

Ci
l (t) = Ĉi

l e
(i k·xi−ωt),

with

Ĉi
l = û

∫
D̂ vl (ξ)ei kξdξ∫
D̂ v

2
l (ξ)dξ

, l = 0, . . . , N − 1.

The algebraic system which results from (3.2) gives the numerical dispersion relation for
the semi-discrete scheme.

3.1. One-Dimensional Analysis

In this Section, we analyze the dissipation and dispersion errors in the semi-discretization
of the one-dimensional scalar advection equation

∂u

∂t
+ a

∂u

∂x
= 0, −∞ < x <∞ (3.4)

u(x, 0) = eikx, (3.5)

where the wave speeda is a positive real number. The exact dispersion relation for (3.4)
corresponding to its elementary solution (3.3) isω = ak.

Let the domain be partitioned into elements,In = [xn, xn+1], where

· · · < x−2 < x−1 < x0 < x1 < x2 < · · · .

Using an upwind numerical flux (α = 1), we can write Eq. (3.2) in the matrix form

1xn

2
Q
∂Cn

∂t
+ aN−1Cn−1+ aN0Cn = 0, (3.6)

whereCn = (Cn
0 ,C

n
1 , . . . ,C

n
N−1)

T are the expansion coefficients in the elementIn;1xn ≡
xn+1− xn; and the matricesQ, N−1, andN0 are given in the Appendix.

If the mesh is uniform, i.e.,1xn ≡ δ andxn = nδ, then we can seek solutions of the
form

Cn(t) = Ĉei (knδ−ωt) (3.7)

which satisfy the initial condition (3.5) wherêC is a complex vector of dimensionN
independent ofn andt . By substituting (3.7) into (3.6), we get an algebraic system forĈ(

− iωδ

2
Q+ ae−ikδN−1+ aN0

)
Ĉ = 0. (3.8)

It is clear thatĈ is an eigenvector corresponding to the eigenvalueω of the matrix

M = 2

i δ
Q−1

(
ae−ikδN−1+ aN0

)
.

For a given value of the wave numberk, the matrixM hasN eigenvalues{ωl }l=0,...,N−1 and
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N eigenvectors{Ĉl }l=0,...,N−1. Therefore, we can write the solution (3.7) as

Cn(t) =
N−1∑
l=0

λl Ĉl e
i (knδ−ωl t), (3.9)

whereλl are the scaling coefficients such that (3.9) satisfies the initial condition (3.5)

Ĉex =
N−1∑
l=0

λl Ĉl

with Ĉex = (ĉex,0, ĉex,1, . . . , ĉex,N−1)
T and

ĉex,l =
∫ δ

0 vl (ξ)eikξdξ∫ δ
0 v

2
l (ξ)dξ

, l = 0, . . . , N − 1.

The numerical solution (3.9) is a superposition ofN waves traveling at different phase
speeds. We define thephysical modeas one with the frequency that approximates the
exact dispersion relation for a range of wave numbers. The others are theparasite modes
associated with the numerical scheme.

Dissipation and dispersion errors.Define the non-dimensional wave number and fre-
quency as

K = kδ and Ä = ωδ

a
. (3.10)

The numerical dispersion relation is determined from (3.8) as

det(−iÄQ+ 2e−i K N−1+ 2N0) = 0 (3.11)

whereas the exact dispersion relation isÄ= K . The values ofÄ are generally complex,
Ä=Är + iÄi , with a negative imaginary part. The negative imaginary part represents the
numerical damping inherent in the discretization process.

The solution of (3.11) for a third-order discontinuous Galerkin method involves three
modes. Figure 1 shows the dispersion relationÄr vs K for these modes. We can see that
the physical mode, plotted as a solid line, agrees with the exact dispersion relation up to
approximatelyK = 3. As the wave number increases beyond 3, the damping rate of the
physical mode increases and the real part ofÄ also starts to deviate from the exact value.
The two parasite modes associated with the numerical scheme (3.6) are shown as dashed
lines in Fig. 1. Note that the dissipation rate of the parasite waves is relatively large for the
resolved range of wave numbers. As such, they are quickly damped for this range of wave
numbers. A detailed study of these parasite waves will be given elsewhere.

In Fig. 2, the numerical dispersion relation of the physical mode is plotted for schemes
of order 2 to 6. For the purpose of comparison between the schemes of different orders,
the wave numberK is normalized by the order of the schemeN. It is to be noted that the
dispersion relation deviates from the exact one beyondK ≈ N. Also, increasing the order
of the scheme significantly reduces the dissipation error. This figure also indicates that the
sixth-order scheme is optimal for the scalar advection in that it is of minimal order for which
the dispersion and dissipation errors are less than 0.5% forK up to approximatelyN.
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FIG. 1. Numerical dispersion relation (top) and dissipation rate (bottom) for the third-order scheme. The solid
line is the physical mode.

To quantify the resolution of the scheme, let us specify the dispersion and dissipation
errors to be less than 0.5%, i.e.,

|Är − K | < 0.005 and |Äi | < 0.005. (3.12)

The dissipation criterion corresponds to the damping of wave amplitude by less than 10%
over a distance of 20 elements. The resolution property of the scheme is quantified in
Table I in terms of the maximum resolvable wave numberkc and the number of points per
wavelength (computed as 2πN/(kcδ)), which is also the number of degrees of freedom per
wavelength, satisfying the accuracy limit (3.12) on dispersion and dissipation errors.
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FIG. 2. Numerical dispersion relation (top) and dissipation rate (bottom) of the physical mode for schemes
of order 2 to 6.

It is evident from Fig. 2 and Table I that the limit on the dissipation error imposes a
relatively more stringent condition on the accuracy of the scheme than does the dispersion
error. The resolution property of the various orders of the scheme shown in Table I should
serve as a rough guideline, as it is based on the simplest advection equation and arbitrary
error bounds (3.12).

Remarks. The numerical dispersion relation naturally depends on the flux formula. The
results presented in Figs. 1 and 2 are based on the Roe flux (α= 1). The upwinding in the
Roe flux introduces a certain amount of damping. In order to illustrate the effect of the flux
formula, the dispersion relation using a centered flux (α= 0) is plotted in Fig. 3. Shown
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TABLE I

Maximum Resolvable Wave Numberkcδ According to Criteria (3.12)

Order kcδ Points per wavelength

2 0.8 15.7
3 1.8 10.5
4 3.2 7.9
5 4.6 6.8
6 6.15 6.2
8 9.4 5.3

12 16.2 4.6
16 23.35 4.3

Note.Upwind flux (α = 1).

therein is the real part ofÄ vs K . The imaginary part ofÄ is zero, implying no damping.
This is true even for parasite waves. However, there is a slight deterioration in the dispersion
relation as it starts deviating from the exact one atK < 3.

All the numerical results reported here are based on the Legendre polynomials as the
basis functions.

3.2. Two-Dimensional Analysis

We now study the numerical dispersion and dissipation errors associated with the dis-
cretization of the wave equation

∂2φ

∂t2
− a2∇2φ = 0 (3.13)

FIG. 3. Numerical dispersion relation for the third-order scheme when a centered flux is used. The imaginary
part ofÄ is zero for all modes.
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FIG. 4. Rectangular mesh pattern and local coordinate system.

by the discontinuous Galerkin method on quadrilateral and triangular elements. By setting

u1 = ∂φ

∂t
− a

∂φ

∂x
and u2 = −a

∂φ

∂y
,

we can write (3.13) in the form of (2.1) where

F(u) =
(

A1u
A2u

)
, A1 = a

(
1 0
0 −1

)
, A2 = a

(
0 1
1 0

)
, (3.14)

which is expedient for the application of the discontinuous Galerkin method.

3.2.1. Quadrilateral Elements

For simplicity, the computational domain is divided into rectangular elementsEnm by
linesx= xn andy= ym, i.e.,Enm= [xn, xn+1]× [ym, ym+1], as shown in Fig. 4. Then using
the Roe flux, (3.2) can be easily rewritten in a matrix form

Q
∂Cnm

∂t
+ 2a

1xn

[
N0Cnm+ N−1Cn−1m + N+1Cn+1m

]
+ 2a

1ym

[
M0Cnm+M−1Cnm−1+M+1Cnm+1

]= 0, (3.15)

where1xn = xn+1− xn,1yn = yn+1− yn, andCnm denotes the vector containing all the
coefficients of expansion in the elementEnm. The matrices are given in the Appendix.

As in the one-dimensional analysis, if the mesh is uniform, i.e.,1xn ≡ δx, 1ym ≡ δy,
then we can seek solutions in the form

Cnm(t) = Ĉei [k(cosθxn+sinθym)−ωt ], (3.16)

wherek = (k cosθ, k sinθ) andĈ is a complex vector independent ofn, m, andt . This
represents a plane wave solution with a wave numberk and a propagation angleθ . By
substituting (3.16) into (3.15), we get
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[
−iωQ+ 2a

δx

(
N0+ e−ik cosθδx N−1+ eik cosθδx N+1

)
+ 2a

δy

(
M0+ e−ik sinθδyM−1+ eik sinθδyM+1

)]
Ĉ = 0. (3.17)

That the determinant of the coefficient matrix must be zero for a non-trivial solution ofĈ
determines the dispersion relation for the semi-discretization.

Dissipation and dispersion errors.To study the dispersion relation (3.17), we define
the following non-dimensional parameters

Ä = ωδx

a
, K = kδx,

δy

δx
= γ.

The exact dispersion relation for (2.1), (3.1), and (3.14) isÄ = ±K . The numerical disper-
sion relation is given by

det
(−iÄQ+ 2

(
N0+ e−i K cosθN−1+ ei K cosθN+1

)
+ 2γ

(
M0+ e−i K sinθγM−1+ ei K sinθγM+1

)) = 0. (3.18)

It is clear that the value ofÄ will now be a function of wave numberK and angleθ . Con-
sequently, the wave propagation will be anisotropic, especially for under-resolved waves.

Using the third-order scheme as an example, the numerical frequencyÄ as a function of
wave angleθ is shown in Fig. 5 forK = 0.5π, 0.8π , andπ with δx = δy. It is to be noted
that as the wave number increases, the dependency onθ increases.

FIG. 5. Numerical phase speed (top) and dissipation rate (bottom) as functions of wave propagation angleθ .
Tensor-product basis.δx = δy. (—) K = 0.5π ; (- - -) K = 0.8π; (– – –)K =π .
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FIG. 6. Polar plot of phase speedÄr /K (left) and dissipatione−10|Äi | (right). Tensor-product basis.
(—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .

To illustrate the anisotropy more graphically, Fig. 6 shows the numericalphase speed
anddissipation rateas functions ofθ in a polar plot. Here, the phase speed isÄr /K . The
exact dispersion relation is represented by the unit circle. Figure 6 (right) is the polar plot
of dissipatione−10|Äi | (i.e., the damping of the wave amplitude over a distance of 10δx) as a
function ofθ , and it brings out the anisotropy rather dramatically. Note that the dissipation
error is relatively larger than the dispersion error. As such, a simulation of a circular wave
in the under-resolved wave space may still appear to be a circle but the wave amplitude
will be damped at a rate that varies with the angleθ . It is easy to verify that the dispersion
relation given by (3.18) in the directionθ = 0 or θ =π/2 is the same as the corresponding
one-dimensional analysis presented in Section 2. Figure 6 indicates that both the dispersion
and dissipation errors are the largest in the direction ofθ = 0 or θ =π/2. This implies that
the accuracy limits given in Section 2 still apply here. This is also typical of schemes of
other orders.

Remarks. The basis used in the previous example is formed by a tensor product of
one-dimensional basis functions. A different basis can be formed by retaining only those
polynomials that are necessary for the completeness of the order. We call it the order-
complete basis. For a given orderN, the number of polynomials in the basis isN2 for the
tensor-product basis and12 N(N + 1) for the order-complete basis.

The phase speed and dissipation rate for the order-complete basis is given in Figs. 7 and 8.
Contrary to the tensor-product basis, the largest damping occurs in the diagonal direction
of the element. This is not entirely surprising since now fewer basis functions are used.

The anisotropy is significantly reduced as the order of the scheme increases. Figures 9
and 10 show the dissipation rate as a function ofθ for K =π for schemes of order 3 to 6.
Both the tensor-product basis and the order-complete basis show improvement.

3.2.2. Triangular Elements

Triangular elements are perhaps more flexible than the quadrilaterals for most mesh
generators. For this reason, they are also more popular in applications. Three cases of
regular triangular mesh patterns are analysed. They are shown in Fig. 11. In each case,
the mesh is generated by repeating a mesh pattern, referred to as thegenerating pattern,
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FIG. 7. Numerical phase speed (top) and dissipation rate (bottom) as functions of wave propagation angleθ .
Order-complete basis.δx = δy. (—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .

outlined in dark solid lines. For the meshes in cases 1 and 2, the elements are formed by
dividing a rectangular grid along the diagonal lines. In case 1, the resulting elements are
similarly oriented while in case 2 the orientations are alternated. Case 3 is included here as
it represents a common pattern for many mesh generators.

After computing the expansion coefficients of (3.3), an equation similar to (3.15) can
be derived for each case shown in Fig. 11, except that vectorCnm now contains all the
coefficients for the elements within the generating pattern. This is a straightforward process
and does not warrant any explanation. For the mesh with triangular elements, the order-
complete basis is used.

FIG. 8. Polar plot of phase speedÄr /K (left) and dissipatione−10|Äi | (right). Order-complete basis.
(—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .
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FIG. 9. Dissipation factor(e−10|Äi |) as a function ofθ for schemes of order 3 to 6. Tensor-product basis.
(- - -) Order 3; (– - –) order 4; (– – –) order 5; (—) order 6.

FIG. 10. Dissipation factor(e−10|Äi |) as a function ofθ for schemes of order 3 to 6. Order-complete basis.
(- - -) Order 3; (– - –) order 4; (– – –) order 5; (—) order 6.
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FIG. 11. Triangular mesh patterns considered.
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FIG. 12. Numerical phase speed (top) and dissipation rate (bottom) as a function of wave propagation angleθ .
Mesh of case 1 in Fig. 11.δx = δy. (—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .

The third-order scheme is used as an example. For the mesh pattern in case 1, the phase
speedÄ as a function ofθ is shown in Fig. 12. Figure 13 illustrates the dependency of the
phase speed and the dissipation rate on the wave angleθ in a polar plot forK = 0.5π, 0.8π ,
andπ with δx = δy (the dissipation rate in Fig. 13 (right) represents the damping of the
amplitude after the wave has propagated a distance of 10δx). Figure 13 shows that the
wave has a preferred direction of propagation, namely, the direction normal to the diagonal
interfaces in Fig. 11 (top).

In the mesh pattern of case 2, the orientation of the elements is not uniform but alternates
between two directions. This appears to decrease the anisotropy exhibited in case 1. This

FIG. 13. Polar plot of phase speedÄr /K (left) and dissipatione−10|Äi | (right). Mesh of case 1 in Fig. 11.
(—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .
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FIG. 14. Numerical phase speed (top) and dissipation rate (bottom) as a function of wave propagation angleθ .
Mesh of case 2 in Fig. 11.δx = δy. (—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .

is evident in Fig. 14 which displays the phase speedÄ as a function ofθ for the third-order
scheme and in Fig. 15 which shows their respective polar plots.

Case 3 is a common structure in triangular-element grids. The dispersion relation and the
dissipation rate displayed in Figs. 16 and 17 indicate a light improvement over the results
of case 2.

Numerical dissipation as a function of wave angleθ is shown in Figs. 18 and 19 for
cases 2 and 3, respectively. The wave number isK =π and the order of the scheme varies
from 3 to 6. The higher order schemes tend to have significantly less anisotropy in wave
propagation, consistent with the earlier observation.

FIG. 15. Polar plot of phase speedÄr /K (left) and dissipatione−10|Äi | (right). Mesh of case 2 in Fig. 11.
(—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .
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FIG. 16. Numerical phase speed (top) and dissipation rate (bottom) as a function of wave propagation angle
θ . Mesh of case 3 in Fig. 11.δx = δy. (—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .

4. NUMERICAL EXAMPLES

In this section, we present some numerical examples to validate the analysis of the
previous sections.

4.1. One-Dimensional Scalar Advection Equation

Equation (3.4) is solved numerically by the Runge–Kutta discontinuous Galerkin method
using Legendre polynomials as basis functions on uniform elements withδ= 1. The initial

FIG. 17. Polar plot of phase speedÄr /K (left) and dissipatione−10|Äi | (right). Mesh of case 3 in Fig. 11.
(—) K = 0.5π; (- - -) K = 0.8π; (– – –) K =π .
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FIG. 18. Dissipation factor(e−10|Äi |) as a function ofθ for schemes of order 3 to 6. Triangular mesh of case
2 in Fig. 11. (- - -) Order 3; (– - –) order 4; (– – –) order 5; (—) order 6.

FIG. 19. Dissipation factor(e−10|Äi |) as a function ofθ for schemes of order 3 to 6. Triangular mesh of case
3 in Fig. 11. (- - -) Order 3; (– - –) order 4; (– – –) order 5; (—) order 6.
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FIG. 20. Numerical solution of Eq. (3.4). Uniform meshδx = 1, r0= 0.5,a= 1. (- - -) Order 2; (– – –) order 3;
(– - –) order 4; (— — —) order 5; (– - - –)order 6; (—) exact.

condition is a Gaussian profile

u(x, 0) = e−ln 2(x/r0)
2
, (4.1)

wherer0 is assumed to be equal to 0.5. Plotted in Fig. 20 is the solution at timet = 50,
i.e., after the initial profile has propagated a distance of 50 elements. We observe that the
dissipation errors are more significant than the dispersion errors, which is consistent with
the predictions in Figs. 1 and 2. Furthermore, the peak of the numerical solution is only
slightly ahead of the exact location, confirming that the numerical wave speed is slightly
faster than the exact wave speed, as indicated in Figs. 1 and 2.

4.2. Two-Dimensional Acoustic Wave

We solve the non-linear Euler equations (2.1) where

u =


ρ

ρ u
ρ v

E

 , F(u) =
(

F1(u)
F2(u)

)

F1(u) =


ρ u
ρ u2+ p
ρ uv
u(E + p)

 , F2(u) =


ρ v

ρ uv
ρ v2+ p
v(E + p)


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FIG. 21. Pressure contours (level 1.00005) with grid 1 (left) and grid 2 (right). Order 2 scheme.

on a square domain [0, 1]× [0, 1] with the initial condition

ρ(x, y, 0) = 1, u(x, y, 0) = 0, v(x, y, 0) = 0

and

p(x, y, 0) = 1+ 0.001e
−ln(2) (x−0.5)2+(y−0.5)2

r 2
0 , r0 = 0.02,

which represents a small acoustic source at the center of the domain.
The computations are carried out on three different grids. Grids 1 and 2 are (50× 50)

structured grids with the mesh patterns shown in Fig. 11 as cases 1 and 2, respectively. Grid 3
is unstructured as shown in Fig. 24. The numerical scheme employs first-order polynomials
(second-order scheme) to fourth-order polynomials (fifth order scheme), and a third-order
Runge–Kutta time stepping with a CFL (Courant–Friedrich–Lewy) number equal to 0.25.
The time step was chosen small enough such that the errors are dominated by the spatial
discretization errors.

FIG. 22. Pressure profilesp− 1 alongx= y (- - -) andx = −y (—) with grid 1 (left) and grid 2 (right). Order 2
scheme.
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FIG. 23. Pressure profilesp−1 alongx= − y on grid 1 (left) and grid 2 (right). (–· –) Order 2; (- - -) order 3;
(—) order 4. Only the left peak is displayed.

FIG. 24. Unstructured triangular grid containing 1201 points (left) and pressure contours (level 0.999973 to
1.00007) for an order 5 scheme (right).

FIG. 25. (Left) Pressure profilesp − 1 alongx= y (- - -) and alongx= − y (—) for an order 2 scheme.
(Right) Pressure profilesp− 1 alongx=−y for (– · –) order 2, (- - -) order 3, and (—) order 4 schemes. Only the
left peak is displayed.
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FIG. 26. Pressure profilesp−1 alongx= y (only the left peak is displayed) for an order 3 (left) and an order 4
(right) scheme. (–· –) Unstructured mesh, (- - -) grid 2, and (—) grid 1.

Figure 21 presents the pressure contours obtained with the second-order scheme on grids
1 and 2 after the wave has propagated a distance of 20r0. The pressure profile along the
diagonal linesx= y andx=−y are displayed in Fig. 22. These results are found to agree
with the analytical predictions: errors in the form of anisotropy in wave propagation (i.e.,
the amplitude is a function of wave angle) are introduced by grid 1, whereas such errors
on grid 2 are relatively small. Figure 23 shows the pressure profile alongx=−y on grids
1 and 2 for schemes of order 2 to 4. The dissipation error is found to dominate; it decrease
significantly as also the anisotropy with the increase in the order of the scheme.

Numerical results obtained on the unstructured grid are presented in Figs. 24 and 25.
These results are similar to those obtained on the structured grids. The dissipation errors
are more pronounced than those on the first two grids. On the other hand, anisotropy is
less apparent even for the second-order scheme. Figure 26 compares the results obtained
on the three different grids with a third-order and a fourth-order scheme. It appears that the
influence of the mesh structure on the dissipation error decreases as the order of the scheme
increases.

5. CONCLUSIONS

The present study of a discontinuous Galerkin method shows that the dispersion relation
and the dissipation rate depend on the flux formula. Specifically, in the case of a scalar
advection equation, it is shown that the dissipation error is dominant relative to the dispersion
error if an upwind flux is used. The choice of the order of the method is then determined
by the accuracy limit imposed on the dissipation error; the dispersion relation is almost
exactly satisfied for non-dimensional wave numbers up to a value equal to the order of the
method. For the centered flux, the dissipation rate is exactly zero, but the range of wave
numbers for which the discrete dispersion relation accurately approximates the exact one
is relatively small. This suggests the possibility of an optimal flux formula which will yield
minimal dispersion and dissipation errors over a range of wave numbers. It is the subject of
our ongoing study.

The orientation of elements in a mesh introduces anisotropy in the phase speed as well
as the damping rate. The anisotropy in the dissipation rate is more pronounced than that
in the dispersion relation. It was shown earlier that the mesh with alternating-orientation
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elements has less anisotropic error than that with uniform orientation. The unstructured mesh
engenders less anisotropy compared to the structured mesh with triangular or quadrilateral
elements with uniform orientation or alternating orientations.

The discontinuous Galerkin methods have the potential to become a practical alternative
to the current finite difference methods for acoustic and electromagnetic wave propagation
problems. These methods easily accommodate increasing order of accuracy as desired
while preserving compactness. They also easily handle unstructured grids and boundary
conditions. The existing finite-volume codes can be easily modified to adopt these methods.
Research is under way for implementing these algorithms for the study of supersonic jet
acoustics and certain canonical problems in electromagnetics.

APPENDIX

In this appendix, we give the matrices that appear in Eqs. (3.6) and (3.15) of Section 3.
For the one-dimensional equation (3.4), the fluxF =au. Using the Roe flux formula

(α= 1), it follows thatA+α =a, A−α = 0.
Let the basis functions be{vl (x̄)|l = 0, 1, . . . , N − 1}, wherex̄ is the local coordinate,

x̄ ∈ [−1, 1]. The matrices in Eq. (3.6) are formed as

{Q}i j =
∫ 1

−1
vi v j dx̄,

{N0}i j = vi (1)v j (1)−
∫ 1

−1

dvi

dx̄
v j dx̄,

and

{N−1}i j = −vi (−1)v j (1),

where{·}i j denotes the entries of the matrix fori, j = 0, 1, 2, . . . , N− 1.
For the two-dimensional system (3.14), let

A =
(

1 0
0 −1

)
, B =

(
0 1
1 0

)
.

They are split according to the eigenvalues as follows:

A+ =
(

1 0
0 0

)
, A− =

(
0 0
0 −1

)
, B+ =

(
1
2

1
2

1
2

1
2

)
, B− =

(
− 1

2
1
2

1
2 − 1

2

)
.

Let the basis functions be{vl (x̄, ȳ)|l = 0, 1, . . . , L − 1}. The entries of the matrices in
Eq. (3.15) are

{Q}i j = δαβ
∫ 1

−1

∫ 1

−1
v′lvl dx̄ ȳ (δαβ = 1 if α = β and 0 ifα 6= β),

{N0}i j = {A+}αβ
∫ 1

−1
vl ′(1, ȳ)vl (1, ȳ) dȳ− {A−}αβ

∫ 1

−1
vl ′(−1, ȳ)vl (−1, ȳ) dȳ

−{A}αβ
∫ 1

−1

∫ 1

−1

∂vl ′

∂ x̄
vl dx̄ dȳ,
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{N+1}i j = {A−}αβ
∫ 1

−1
vl ′(1, ȳ)vl (−1, ȳ) dȳ,

{N−1}i j = −{A+}αβ
∫ 1

−1
vl ′(−1, ȳ)vl (1, ȳ) dȳ,

{M0}i j = {B+}αβ
∫ 1

−1
vl ′(x̄, 1)vl (x̄, 1) dx̄ − {B−}αβ

∫ 1

−1
vl ′(x̄,−1)vl (x̄,−1) dx̄

−{B}αβ
∫ 1

−1

∫ 1

−1

∂vl ′

∂ x̄
vl dx̄ dȳ,

{M+1}i j = {B−}αβ
∫ 1

−1
vl ′(x̄, 1)vl (x̄,−1) dx̄,

{M−1}i j = −{B+}αβ
∫ 1

−1
vl ′(x̄,−1)vl (x̄, 1) dx̄,

wherei = 2l ′ + α, j = 2l + β for α, β = 0, 1 andl ′, l = 0, 1, . . . , N − 1.
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