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The dispersion and dissipation properties of the discontinuous Galerkin method
are investigated with a view to simulating wave propagation phenomena. These prop-
erties are analysed in the semi-discrete context of the one-dimensional scalar advec-
tion equation and the two-dimensional wave equation, discretized on triangular and
guadrilateral elements. They are verified by the results from full numerical solutions
of the simple scalar advection equation and the Euler equatiop3999 Academic Press
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1. INTRODUCTION

The discontinuous Galerkin method appears to have been first proposed by Reed ar
[28] for the solution of the linear neutron transport equation. Lesaint and Raviart [21] v
the first to put this method on a firm mathematical basis. Among the later rigorous ana
of the method are those of Johnson and &tkita [19], Richter [29], Peterson [27], ant
Bey and Oden [4]. All these studies are confined to linear equations. The first analys
this method as applied to a non-linear scalar hyperbolic equation is due to Chaven
Cockburn [7]. It was first-order accurate in time and second-order accurate in spac
[9], Cockburn and Shu retained the finite element formulation of [7] but used a sec
order Runge—Kautta type discretization in time. Subsequently, they generalized it to a
of discontinuous Galerkin methods of arbitrary order of formal accuracy and proved t
convergence and total-variation boundedness in the mean [10]. Then Coeklalrfil]
extended their analysis to a one-dimensional system of conservation laws, and Coc
et al. [12] further extended it to the multidimensional scalar case, and more rece
Cockburn and Shu treated the multidimesional systems case [13]. These schemes ess
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employ a discontinuous element formulation and an explicit Runge—Kutta tin
discretization and have proven to be inherently compact and robust; a quadrature
formulation of these schemes is described by Atkins and Shu [2]. They apply it to the inv
cid Burgers equation and to some one-dimensional and two-dimensional linear advec
problems, including the linearized Euler equations for acoustics. They show that this forr
lation requires comparatively less storage and computational time than their conventic
counterpart. In [3] Bassi and Rebay extended the discontinuous Galerkin method to the c
pressible Navier—Stokes equations. In their formulation, the solution and its gradient
approximated in the same function space, thereby preserving compactness. They illus
the performance of the method for supersonic flow past an airfoil (at rather low Reyno
number) using constant, linear, quadratic, and cubic elements. Cockburn and Shu [14] |
also extended their approach to deal with the time-dependent scalar advection—diffu
equation by rewriting the equation as a degenerate first-order system and have sugg
how the approach could be applied to the Navier—Stokes equations. The amenability o
method with discontinuous spatial elements for parallel computation has been establi
by Biswaset al.[5]. Thus, while the inherent flexibility of such schemes to handle comple
geometry and their compactness are obvious, their robustness and ease in accommo
boundary conditions and parallel implementation have been demonstrated by the al
studies.

It is well recognized that highly accurate methods are needed for long-time simulatic
of wave propagation phenomena in acoustics and electromagnetics, which are essen
non-dispersive and non-dissipative [16, 17]. Many current numerical schemes emplo
to study such problems are of the finite difference type [20, 22, 31, 33]. Finite elem
methods have also been advocated by numerous authors (see, for example, [6, 25, 26];
properties of such methods for the Helmholtz problem have been widely studied [1,
36]. For hyperbolic problems, Shakib and Hughes [30] provide a Fourier analysis of :
space-time Galerkin/least-squares method. The analysis of the Taylor—Galerkin methc
one dimension has been proposed by Khelifa and Ouellet [18] and Chaffin and Baker
In these methods, the space discretization is continuous so the inversion of a global r
matrix is generaly required. The discontinuous Galerkin method provides an attrac
alternative. Lowrie [23] and Lowriet al. [24] considered the space—time discontinuous
Galerkin which involves discontinuous elements in both time and space. In [23] a Foul
analysis of the scheme was performed which shows a “superconvergence” property;
the evolution error is h®*1) if the order of the polynomial space usedkisNevertheless
the method requires excessive resources to be useful for practical applications. In
paper, we investigate the wave propagation properties of the semi-discrete form of
discontinuous Galerkin method. We study the dissipation, dispersion, and anisotropy er
introduced by the space discretization and examine these errors on Cartesian and trian
grids.

We provide a brief description of the discontinuous Galerkin method in Section 2. /
analysis of wave propagation in one dimension and two dimensions is carried oul
Section 3. In the two-dimensional case, the study is based on a structured rectang
and triangular grid. Section 4 contains several numerical examples for the one-dimensi
advection equation and the two-dimensional non-linear Euler equations, which valid
the analysis. Some numerical results from the simulation on an unstructured grid are
presented. The last section discusses the conclusions.
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2. DISCONTINUOUS GALERKIN METHOD

Consider a conservation equation for a quantity a regionD

ou 4+ V-F(u) =0, (2.1)

ot

whereF(u) is aflux vector. Let the domain be partitioned into non-overlapping sub-domai
or elementsD;. The discontinuous Galerkin method is a finite element method in whi
the approximation spacé, may be discontinuous across element interfaces. In the sel
discrete formulationy}, contains only spatial functions

Vh = {v e LYD):v|Di € P(D)},

whereP (D)) is a polynomial space defined @h. The degrees of freedom of the solutior
are then obtained by solving a weak formulation of (2.1).

.....

Then the approximate solutian, satisfies

g
/vi(:th+v-F(uh))dX=0, I=0....,N~-1 (22)

in each elemerd;. Using Green’s formula, Eq. (2.2) is recast as
. Ju . .
/ v}—h — Vv, - F(up) dx + / ViF(up) -nds=0, |=0,...,N—1, (2.3)
p Ot Jop

wheredD; is the boundary oD; andn denotes the unit outward normal vector. Since th
data are discontinuous across the interface of contiguous domains, two valmeé.:hf
insideD; andu}, outsideD;) are available at the interface. A numerical fléx,m is then
used to evaluate the interface flux in the last integral of Eq. (2.3)

F(uh) -n | D — Fnum(uih, l.]|J1 n).

The above formulation can be interpreted as a standard Galerkin method in each ele
with a weak boundary condition. Johnson and &i#kita [19] have shown that the order o
accuracy of the method is at least 1/2 if polynomials of degree at mostare used as
basis functions. However, Lesaint and Raviart [21] and Richter [29] proved that the orde
accuracy ign + 1) on a Cartesian grid and on a semi-uniform triangular grid, respective
For simplicity, we call the method to e+ 1)th order if the basis functions are polynomials
of degree at mogt.

3. WAVE PROPAGATION ANALYSIS

To study the wave propagation properties of the semi-discrete discontinuous Gale
method described above, we consider the conservation law (2.1) with the linear flux

Fu) = (A, ..., Agu), U= (U, ..., Un), (3.1)
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whered is the number of space dimensions akd; 4 are constant x m real matrices
such that any real combination of tii¢ has real eigenvalues.
As the problem is linear, the standard numerical fluxes may be written as

d
Frum(Uz, Uz, N) = A:U;L + A;UZ with A = Z ANy,
k=1

where

~+ A+ alA ~~  A—ulA
A, = — A, = —
ande is a real positive number. The case= 0 corresponds to a centered flux aneg= 1
corresponds to the Roe flux (which, since the problem is linear, is the same as the Godu
flux [15] or the Steger—Warming flux [32]).
Assuming an unbounded domdmhand writing the local approximate solutioR in D;
as an expansion of the local basis Bet

N-1

Unlp, (X, 1) = Y Ci(t)yf (%),

1=0

whereC| are the expansion coefficients or the degrees of freedom for the solutidn in
Eq. (2.3) then reads

N-1 (o N d _
Z{ I/ v;vf,dX—ZAkC{/ d X+ Z A C'/ vl ds
| i k=1 Di jeNb(D;)
+A;cﬂ/ vl v, ds} I'=0,....N—1 (3.2)
Sj

with
Nb(D) ={j, j#i:S;#¢% and S;=9D NaD;.
To compute the dispersion relation of the scheme, we seek a solution in the usual fo
ux,t) = 0 ékx=eb, (3.3)

which represents a sinusoidal wave train with a wave nurlaerd a frequency. First an
unbounded domain is generated by repeating a mesh pattern (Fig. 11). Then the expa
coefficientsC! of the solution are calculated by projecting (3.3) onto the local basis of tt
elements in the mesh as
[ (iké—ot)
Ci(t=0 Jo ,v'(s)_ez ds, l=0,...,N—1
Jo, ()" 6)dg

Since the mesh is structured, for each element there exists a translation which ma
reference elemer® onto the elemerD; such that

X=>A(+xi, XiEDi,XG'Di,)’iE'Z’j.
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We then have
Cl(t) = Clefkxi—eb,
with

| _ g Jou®rede
L [puRde

The algebraic system which results from (3.2) gives the numerical dispersion relatior
the semi-discrete scheme.

c =0,...,N—1

3.1. One-Dimensional Analysis

In this Section, we analyze the dissipation and dispersion errors in the semi-discretiz;
of the one-dimensional scalar advection equation

au n aau _
at ax
u(x, 0) = e, (3.5)

0, —0 <X <00 (3.4)

where the wave speealis a positive real number. The exact dispersion relation for (3.
corresponding to its elementary solution (3.3pis- ak.
Let the domain be partitioned into elements= [Xn, Xn+1], where

X2 <X < Xp <X < Xp< e

Using an upwind numerical fluxy(= 1), we can write Eq. (3.2) in the matrix form

AX, 0C"
2 Q ot

+aN_;C" ! 4 aNo,C" =0, (3.6)
whereC" = (CJ,CI, ..., Cl_,)T are the expansion coefficients in the elemgntAx, =
Xn+1 — Xn; and the matrice®, N_;, andNg are given in the Appendix.

If the mesh is uniform, i.e.AXx, = § andx, = né, then we can seek solutions of the
form

C"(t) = Cd kno—eb (3.7)

which satisfy the initial condition (3.5) wher@ is a complex vector of dimensioN
independent ofi andt. By substituting (3.7) into (3.6), we get an algebraic systentCfor

i wé ‘ R
(—%Q +ae N + aNo) &=o (3.8)
Itis clear thatC is an eigenvector corresponding to the eigenvalué the matrix

M = %Q’l (ae™ N_1 +aNo) .
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N-—1
C'(t) = > nCdkm—an, (3.9)
1=0

wherei, are the scaling coefficients such that (3.9) satisfies the initial condition (3.5)
~ Nil ~
Cex = Z Al CI
1=0
With Cex = (Eex0, Cex1, - - - Cexn—1) " @nd
$ ike
. v (§)eed
Cex| = 41‘0 : %- E

Jo v2(e)de

The numerical solution (3.9) is a superpositionNfwaves traveling at different phase
speeds. We define thghysical modeas one with the frequency that approximates the
exact dispersion relation for a range of wave numbers. The others gpartgte modes
associated with the numerical scheme.

I=0,...,N—-1

Dissipation and dispersion errors.Define the non-dimensional wave number and fre:
quency as
w$

K =ké and Q= ' (3.10)

The numerical dispersion relation is determined from (3.8) as
det—i2Q +2e7'KN_; +2Ng) =0 (3.11)

whereas the exact dispersion relatiorfds= K. The values of2 are generally complex,
Q=Q, +iQ;, with a negative imaginary part. The negative imaginary part represents
numerical damping inherent in the discretization process.

The solution of (3.11) for a third-order discontinuous Galerkin method involves thri
modes. Figure 1 shows the dispersion relatipnvs K for these modes. We can see that
the physical mode, plotted as a solid line, agrees with the exact dispersion relation u
approximatelyK = 3. As the wave number increases beyond 3, the damping rate of t
physical mode increases and the real paalso starts to deviate from the exact value.
The two parasite modes associated with the numerical scheme (3.6) are shown as dz
lines in Fig. 1. Note that the dissipation rate of the parasite waves is relatively large for
resolved range of wave numbers. As such, they are quickly damped for this range of w
numbers. A detailed study of these parasite waves will be given elsewhere.

In Fig. 2, the numerical dispersion relation of the physical mode is plotted for schen
of order 2 to 6. For the purpose of comparison between the schemes of different orc
the wave numbeK is normalized by the order of the schefRe It is to be noted that the
dispersion relation deviates from the exact one beyrd N. Also, increasing the order
of the scheme significantly reduces the dissipation error. This figure also indicates that
sixth-order scheme is optimal for the scalar advection in that it is of minimal order for whi
the dispersion and dissipation errors are less than 0.5% fgp to approximatelyN.
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FIG.1. Numerical dispersion relation (top) and dissipation rate (bottom) for the third-order scheme. The s
line is the physical mode.

To quantify the resolution of the scheme, let us specify the dispersion and dissipe
errors to be less than 0.5%, i.e.,

I — K| <0.005 and || < 0.005 (3.12)

The dissipation criterion corresponds to the damping of wave amplitude by less than
over a distance of 20 elements. The resolution property of the scheme is quantifie
Table | in terms of the maximum resolvable wave numeand the number of points per
wavelength (computed a2 /(k:8)), which is also the number of degrees of freedom p
wavelength, satisfying the accuracy limit (3.12) on dispersion and dissipation errors.
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FIG. 2. Numerical dispersion relation (top) and dissipation rate (bottom) of the physical mode for schen
of order 2 to 6.

It is evident from Fig. 2 and Table | that the limit on the dissipation error imposes
relatively more stringent condition on the accuracy of the scheme than does the disper
error. The resolution property of the various orders of the scheme shown in Table | shc

serve as a rough guideline, as it is based on the simplest advection equation and arbi
error bounds (3.12).

Remarks. The numerical dispersion relation naturally depends on the flux formula. T
results presented in Figs. 1 and 2 are based on the Roexflad). The upwinding in the

Roe flux introduces a certain amount of damping. In order to illustrate the effect of the fl
formula, the dispersion relation using a centered flux=(Q) is plotted in Fig. 3. Shown
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TABLE |
Maximum Resolvable Wave Numberk.6 According to Criteria (3.12)

Order k. Points per wavelength
2 0.8 15.7
3 1.8 10.5
4 3.2 7.9
5 4.6 6.8
6 6.15 6.2
8 9.4 5.3
12 16.2 4.6
16 23.35 4.3

Note.Upwind flux (@ = 1).

therein is the real part &2 vs K. The imaginary part of2 is zero, implying no damping.
This is true even for parasite waves. However, there is a slight deterioration in the dispel
relation as it starts deviating from the exact on&at 3.

All the numerical results reported here are based on the Legendre polynomials a
basis functions.

3.2. Two-Dimensional Analysis

We now study the numerical dispersion and dissipation errors associated with the
cretization of the wave equation

— —a’V% =0 (3.13)

-4 o //// \\ ////—
-~ N -
-6t - N - .
8 —//// \\\ /////
_10 L L 1 1 L L L L L
0 1 2 3 4 5 6 7 8 9
K

FIG. 3. Numerical dispersion relation for the third-order scheme when a centered flux is used. The imagi
part of 2 is zero for all modes.
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FIG. 4. Rectangular mesh pattern and local coordinate system.

by the discontinuous Galerkin method on quadrilateral and triangular elements. By set

9 9
_ 900 and up;=-a—,

U, = a
at  ax dy

we can write (3.13) in the form of (2.1) where

F(u)=<23), A1=a(é _°1>, Az=a<2 é) (3.14)

which is expedient for the application of the discontinuous Galerkin method.

3.2.1. Quadrilateral Elements

For simplicity, the computational domain is divided into rectangular elemgfitsby
linesx = x, andy = yn, i.€., E"M =Xy, Xns1] X [Ym,» Ym+1], @S shown in Fig. 4. Then using
the Roe flux, (3.2) can be easily rewritten in a matrix form

oC"™m  2a
Q ot + N [Nocnm + N_lcn—lm + N+1Cn+lm]
n
2a
+ . [MoC"™ + M _,C"™* + M_,C"™ ] =0, (3.15)
m

whereAX, = Xnir1 — Xny AVn = Yni1 — Yn, @andC"™ denotes the vector containing all the
coefficients of expansion in the elemdsit™. The matrices are given in the Appendix.

As in the one-dimensional analysis, if the mesh is uniform, e, = 8y, Aym = 8y,
then we can seek solutions in the form

Cnm(t) — éei [k(cos&xmtsineym)fwt]’ (3.16)
wherek = (kcost, ksing) andC is a complex vector independent mf m, andt. This

represents a plane wave solution with a wave nunkband a propagation angte By
substituting (3.16) into (3.15), we get
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. 2a . .
{—IwQ + 57 (NO + e—|kcos(95X N_;+ elkcoseéxN_H)
X

2a L L .
+ 57 (MO + e—lk smeayMil + e'ks'”%yM+1)] C=0. (3.17)

y

That the determinant of the coefficient matrix must be zero for a non-trivial soluti@n of
determines the dispersion relation for the semi-discretization.

Dissipation and dispersion errors.To study the dispersion relation (3.17), we defin
the following non-dimensional parameters
wdy

8
Q= ., K=k, L=y.
a X FRe

The exact dispersion relation for (2.1), (3.1), and (3.14) is =K. The numerical disper-
sion relation is given by

det(—i QQ + 2(No + e K O N_y + &K ©¥N )
+2y (Mg + e s M_y + XM 4)) = 0. (3.18)

Itis clear that the value a will now be a function of wave numbé{ and angle. Con-
sequently, the wave propagation will be anisotropic, especially for under-resolved wa
Using the third-order scheme as an example, the numerical freq@easya function of
wave angled is shown in Fig. 5 folK =0.57, 0.8, andx with §, = 4§y. It is to be noted

that as the wave number increases, the dependengyrmmeases.

1.04 } ]
102 } 1
] R e e
0.98 | ]
0.96 | ]

Phase speed £2,/K
[
\

o
o

002 F- -~ T T T T
-0.04 | // \ / \ / N\ / A
-0.06 | 1
-0.08 24 7 N 7 N
0.1} 1
-0.12 1
-0.14 . . . . ]

Dissipasion rate

Angle 0

FIG.5. Numerical phase speed (top) and dissipation rate (bottom) as functions of wave propagation an
Tensor-product basig, =48,. (—) K =0.57; (---) K=0.87; (- —-)K =m.
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FIG. 6. Polar plot of phase speef, /K (left) and dissipatione %% (right). Tensor-product basis.
(—) K=0571;(---) K=0.87; (-—-)K =m.

To illustrate the anisotropy more graphically, Fig. 6 shows the numepitase speed
anddissipation rateas functions ob in a polar plot. Here, the phase spee®jg K. The
exact dispersion relation is represented by the unit circle. Figure 6 (right) is the polar y
of dissipatione~19%i (j.e., the damping of the wave amplitude over a distance &f)1ds a
function of6, and it brings out the anisotropy rather dramatically. Note that the dissipatit
error is relatively larger than the dispersion error. As such, a simulation of a circular we
in the under-resolved wave space may still appear to be a circle but the wave amplit
will be damped at a rate that varies with the ar@lét is easy to verify that the dispersion
relation given by (3.18) in the directigh=0 or6 = /2 is the same as the corresponding
one-dimensional analysis presented in Section 2. Figure 6 indicates that both the dispe
and dissipation errors are the largest in the directioh-6f0 or6 = /2. This implies that
the accuracy limits given in Section 2 still apply here. This is also typical of schemes
other orders.

Remarks. The basis used in the previous example is formed by a tensor product
one-dimensional basis functions. A different basis can be formed by retaining only th
polynomials that are necessary for the completeness of the order. We call it the or
complete basis. For a given orddr the number of polynomials in the basisNg for the
tensor-product basis argN(N + 1) for the order-complete basis.

The phase speed and dissipation rate for the order-complete basis is given in Figs. 7 a
Contrary to the tensor-product basis, the largest damping occurs in the diagonal direc
of the element. This is not entirely surprising since now fewer basis functions are used

The anisotropy is significantly reduced as the order of the scheme increases. Figur
and 10 show the dissipation rate as a functiosi &r K == for schemes of order 3 to 6.
Both the tensor-product basis and the order-complete basis show improvement.

3.2.2. Triangular Elements

Triangular elements are perhaps more flexible than the quadrilaterals for most m
generators. For this reason, they are also more popular in applications. Three cast
regular triangular mesh patterns are analysed. They are shown in Fig. 11. In each c
the mesh is generated by repeating a mesh pattern, referred to gentrating pattern
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FIG. 7. Numerical phase speed (top) and dissipation rate (bottom) as functions of wave propagation an

Order-complete basig, =4,. (—) K=0.57;(---) K=0.87; (-—--)K =m7.

outlined in dark solid lines. For the meshes in cases 1 and 2, the elements are forme
dividing a rectangular grid along the diagonal lines. In case 1, the resulting elements
similarly oriented while in case 2 the orientations are alternated. Case 3 is included he
it represents a common pattern for many mesh generators.

After computing the expansion coefficients of (3.3), an equation similar to (3.15) ¢
be derived for each case shown in Fig. 11, except that vé&&tBrnow contains all the
coefficients for the elements within the generating pattern. This is a straightforward pro
and does not warrant any explanation. For the mesh with triangular elements, the o
complete basis is used.

15
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0.5

0.0

-0.5

-1.0 -0.5 0.0 0.5 L0 15

FIG. 8. Polar plot of phase speeg, /K (left) and dissipatione %¢! (right). Order-complete basis.

(—)K=05r;(---) K=087; (———-)K =m.
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FIG. 11. Triangular mesh patterns considered.
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FIG.12. Numerical phase speed (top) and dissipation rate (bottom) as a function of wave propagatién ang
Mesh of case 1 in Fig. 15, =48,. (—) K=0.57; (---) K=0.87; (———)K =m.

The third-order scheme is used as an example. For the mesh pattern in case 1, the |
speed? as a function of is shown in Fig. 12. Figure 13 illustrates the dependency of th
phase speed and the dissipation rate on the wave amgkepolar plot fork = 0.5, 0.8,
andm with 8y =8y (the dissipation rate in Fig. 13 (right) represents the damping of tt
amplitude after the wave has propagated a distance &f).1Bigure 13 shows that the
wave has a preferred direction of propagation, namely, the direction normal to the diagc
interfaces in Fig. 11 (top).

In the mesh pattern of case 2, the orientation of the elements is not uniform but altern
between two directions. This appears to decrease the anisotropy exhibited in case 1.

15 15

05

0.0

-0.5

-1.5 -1.5
-15 -1.0 -0.5 0.0 0.5 10 15 -1.5 -1.0 035 0.0 0.5 10 15

FIG. 13. Polar plot of phase speed. /K (left) and dissipatiore %% (right). Mesh of case 1 in Fig. 11.
(—)K=057;(---) K=0.8r1; (-——-)K =m.
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-0.04 | b
-0.06 -~ - ~ T TN P ~ -
-0.08 | ]
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-0.14 | . ) ) ) ) L]

Dissipasion rate ;

Angle 8

FIG. 14. Numerical phase speed (top) and dissipation rate (bottom) as a function of wave propagatién an:
Mesh of case 2 in Fig. 15, =8,. (—) K=0.57; (---) K=0.87; (-——)K =m.

is evident in Fig. 14 which displays the phase sp@as a function ob for the third-order
scheme and in Fig. 15 which shows their respective polar plots.

Case 3 is a common structure in triangular-element grids. The dispersion relation an
dissipation rate displayed in Figs. 16 and 17 indicate a light improvement over the re:
of case 2.

Numerical dissipation as a function of wave anglés shown in Figs. 18 and 19 for
cases 2 and 3, respectively. The wave numbé&rissr and the order of the scheme varies
from 3 to 6. The higher order schemes tend to have significantly less anisotropy in v
propagation, consistent with the earlier observation.

0.5 0.5

0.0

0.0

-0.5 -0.5

s -1.0 -0.5 0.0 0.5 10 15 s -1.0 -0.5 0.0 0.5 10 15

FIG. 15. Polar plot of phase spee@d, /K (left) and dissipatiore1%%! (right). Mesh of case 2 in Fig. 11.
(—)K=05r;(---) K=087; (———-)K =m.
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FIG. 16. Numerical phase speed (top) and dissipation rate (bottom) as a function of wave propagation a
0. Mesh of case 3 in Fig. 18, =4¢,.(—) K=0.57;(---) K=0.87; (- )K =.

4. NUMERICAL EXAMPLES

In this section, we present some numerical examples to validate the analysis of
previous sections.

4.1. One-Dimensional Scalar Advection Equation

Equation (3.4) is solved numerically by the Runge—Kutta discontinuous Galerkin mett
using Legendre polynomials as basis functions on uniform elements with The initial

15 1.5

1.0 1.0

0.5 0.5

0.0 0.0

-0.5 1 -0.5

1.0 -1.0

'1?16 -1.0 -0.5 0.0 0.5 10 15 -1.5»1,5 -1.0 -0.5 0.0 0.5 10 15

FIG. 17. Polar plot of phase speed, /K (left) and dissipatiore~%%! (right). Mesh of case 3 in Fig. 11.
(—)K=057;(---) K=0.87; (-———-)K =m.
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FIG. 18. Dissipation factoe2%¢!) as a function o for schemes of order 3 to 6. Triangular mesh of cas:
2in Fig. 11. (- - -) Order 3; (— - —) order 4; (— —-) order 5; (—) order 6.
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FIG. 19. Dissipation factoe1%¢!) as a function o for schemes of order 3 to 6. Triangular mesh of cas:
3in Fig. 11. (- - -) Order 3; (— - —) order 4; (— ——) order 5; (—) order 6.
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1.2 1 1 . ,

10 ¢

0.2}

00 F———x =sassl

FIG.20. Numerical solution of Eg. (3.4). Uniform megh=1,r,=0.5,a=1. (---) Order 2; (——-) order 3;
(- --) order 4; (— — —) order 5 - - —) order 6; (—) exact.

condition is a Gaussian profile
uex, 0) = —In 2(x/r0)2’ (4_1)

whererg is assumed to be equal to 0.5. Plotted in Fig. 20 is the solution atttit0,
i.e., after the initial profile has propagated a distance of 50 elements. We observe tha
dissipation errors are more significant than the dispersion errors, which is consistent \
the predictions in Figs. 1 and 2. Furthermore, the peak of the numerical solution is o
slightly ahead of the exact location, confirming that the numerical wave speed is sligt
faster than the exact wave speed, as indicated in Figs. 1 and 2.

4.2. Two-Dimensional Acoustic Wave

We solve the non-linear Euler equations (2.1) where

0
pu Fl(U)>
u= , F(u) =
P w (Fz(U)
E
pou pv
_ ,ou2+p | puv
R =", C o RW=| 5

UuE+ p) v(E+ p)
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FIG. 21. Pressure contours (level 1.00005) with grid 1 (left) and grid 2 (right). Order 2 scheme.

on a square domain [Q] x [0, 1] with the initial condition
p(X9 y9 O) = 17 U(X, ys O) = 07 U(Xy y: O) = 0

and

_05)2 —05)2
7|n(2) (x—0.5+(y—0.5)

p(x,y,0) =1+ 0.00le T, ro=002

which represents a small acoustic source at the center of the domain.

The computations are carried out on three different grids. Grids 1 and 2 ase5®30
structured grids with the mesh patterns shown in Fig. 11 as cases 1 and 2, respectively. (
is unstructured as shown in Fig. 24. The numerical scheme employs first-order polynor
(second-order scheme) to fourth-order polynomials (fifth order scheme), and a third-c
Runge—Kutta time stepping with a CFL (Courant—Friedrich—Lewy) number equal to O.
The time step was chosen small enough such that the errors are dominated by the <
discretization errors.

7
L L . L L L L L L " n L "
o e o2 ©3 04 05 086 0.7 08 0.8 1 il Qa1 02 0.3 0.4 05 08 o7 0.8 08 1

FIG.22. Pressure profilep — 1alongx =y (---)andx = —y (—) with grid 1 (left) and grid 2 (right). Order 2
scheme.
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FIG. 23. Pressure profilep— 1 alongx = — y on grid 1 (left) and grid 2 (right). (—) Order 2; (- - -) order 3;

(—) order 4. Only the left peak is displayed.
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(Left) Pressure profilep — 1 alongx =y (- - -) and alongx = — y (—) for an order 2 scheme.

(Right) Pressure profileg — 1 alongx = —y for (—- —) order 2, (- - -) order 3, and (—) order 4 schemes. Only the

left peak is displayed.

FIG. 25.
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FIG.26. Pressure profilep— 1 alongx =y (only the left peak is displayed) for an order 3 (left) and an order -
(right) scheme. (--) Unstructured mesh, (- - -) grid 2, and (—) grid 1.

Figure 21 presents the pressure contours obtained with the second-order scheme ol
1 and 2 after the wave has propagated a distance of.Zlhe pressure profile along the
diagonal linex =y andx = —y are displayed in Fig. 22. These results are found to agr
with the analytical predictions: errors in the form of anisotropy in wave propagation (i
the amplitude is a function of wave angle) are introduced by grid 1, whereas such el
on grid 2 are relatively small. Figure 23 shows the pressure profile alengy on grids
1 and 2 for schemes of order 2 to 4. The dissipation error is found to dominate; it decr
significantly as also the anisotropy with the increase in the order of the scheme.

Numerical results obtained on the unstructured grid are presented in Figs. 24 an
These results are similar to those obtained on the structured grids. The dissipation ¢
are more pronounced than those on the first two grids. On the other hand, anisotro
less apparent even for the second-order scheme. Figure 26 compares the results ot
on the three different grids with a third-order and a fourth-order scheme. It appears tha
influence of the mesh structure on the dissipation error decreases as the order of the s
increases.

5. CONCLUSIONS

The present study of a discontinuous Galerkin method shows that the dispersion rel
and the dissipation rate depend on the flux formula. Specifically, in the case of a st
advection equation, itis shown that the dissipation error is dominant relative to the dispel
error if an upwind flux is used. The choice of the order of the method is then determi
by the accuracy limit imposed on the dissipation error; the dispersion relation is aln
exactly satisfied for non-dimensional wave numbers up to a value equal to the order o
method. For the centered flux, the dissipation rate is exactly zero, but the range of \
numbers for which the discrete dispersion relation accurately approximates the exac
is relatively small. This suggests the possibility of an optimal flux formula which will yiel
minimal dispersion and dissipation errors over a range of wave numbers. It is the subje
our ongoing study.

The orientation of elements in a mesh introduces anisotropy in the phase speed a:
as the damping rate. The anisotropy in the dissipation rate is more pronounced thar
in the dispersion relation. It was shown earlier that the mesh with alternating-orienta
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elements has less anisotropic error than that with uniform orientation. The unstructured n
engenders less anisotropy compared to the structured mesh with triangular or quadrila
elements with uniform orientation or alternating orientations.

The discontinuous Galerkin methods have the potential to become a practical alterne
to the current finite difference methods for acoustic and electromagnetic wave propage
problems. These methods easily accommodate increasing order of accuracy as de
while preserving compactness. They also easily handle unstructured grids and boun
conditions. The existing finite-volume codes can be easily modified to adopt these meth
Research is under way for implementing these algorithms for the study of supersonic
acoustics and certain canonical problems in electromagnetics.

APPENDIX

In this appendix, we give the matrices that appear in Egs. (3.6) and (3.15) of Sectior

For the one-dimensional equation (3.4), the flx=au. Using the Roe flux formula
(¢ =1), it follows thatAl =a, A, =0.

Let the basis functions b, (X)|l =0, 1, ..., N — 1}, whereX is the local coordinate,
X € [—1, 1]. The matrices in Eq. (3.6) are formed as

1
Q)i = /1viv; dx,

1 d i
{No}ij = vi(Dvj(D) — lld—;v,- d
and

{N_1}ij = —vi(=Dv; (D),

where{-};; denotes the entries of the matrix forj =0,1,2, ..., N — 1.
For the two-dimensional system (3.14), let

1 0 01
(5 5) o=
They are split according to the eigenvalues as follows:
10 0 O
+ _ - _ + _
wn (59 = (3 %) o=

Let the basis functions bl (X, y)|l =0, 1, ..., L — 1}. The entries of the matrices in
Eq. (3.15) are

NI NI
NI NI
SN——
bt
Il
N
NI
Nl
(NN
NI
SN——

1 .1
{Qlij = (Saﬂ/ / vy dxy (b =1lifa =B and0ifa # B).
1/

1

1
(NoJij = {A™}os / (L Pu y) Y — (A Jug / (=L Pu (L) dy

—{A}a,g/ / 8£v|dxdy
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1
Nahij = (A Jog / (L P (-1 ) d.

1
(NL1}ij = —(A*)us / (L Pu( 9 dy.

{Mo}ij

1 1
(B*)us / o (%, Doy (%, 1) d% — (B g / o (K, =D (K, —1) dX
1 -1

! L 8v|/ — =
—{B}aﬁllllﬁvl dx dy,
1 — — —
Mosij = (B Jus / o (K, Dy (K, —1) dX,
-1

{M_1}jj

1
B [ (- Du R D oK,
-1
wherei =2I' +a, j=2 + gfora,=0,1andl’,| =0,1,...,N — 1.
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